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Abstract 

The close-packed-sphere model is often used to explain 
the frequent occurrence of face-centered cubic lattice 
structures. Recently, it has been found that in body- 
centered cubic and body-centered tetragonal lattices the 
volume of the interstitial void is maximized. In this 
paper all of the three-dimensional lattice packings of 
spheres with this property are determined: there are, in 
addition to the two just mentioned, only the simple 
cubic and simple hexagonal lattices. A quantitative 
measure of the relative instability of these packings is 
also given. 

Introduction 

A lattice in R" is a set of points of the form m~ a~ + ... 
+ m" a n, where m~ . . . .  , m" run over the integers and a~, 
..., a" is a fixed set of n vectors which span R ' ;  we say 
that the lattice is generated by a~ . . . .  , a ' .  If we place the 
centers of hard spheres with equal radii at each lattice 
point, we have a lattice packing o f  spheres. The spheres 
cannot overlap, so our lattice limits their common 
radius in some fashion; but we always choose spheres 
of maximum possible radius, so that each sphere 
touches its 'nearest neighbors'. We are interested in the 
density of such a packing: if we take a large but finite 
portion of space, we are interested in the fraction of the 
volume which is occupied by the spheres. 

If a~ . . . . .  a" generate the lattice L, let G be the (n x 
n) matrix whosejth column is aj. Then any lattice point 
equals Gm for some column matrix m with integer 
entries. So, if A is an (n x n) matrix with integer entries 
and determinant +1, then the columns of GA also 
generate L. If O is an orthogonal transformation (i.e. a 
product of rotations and reflections), then Oa~ . . . . .  Oa" 
generate a lattice L' obtained by rotating and reflecting 
the points of L; both L and L' clearly determine lattice 
packings of spheres of equal density. 

The quadratic f o rm  o f  the lattice L is ~ b i j x i x j ,  
where B = (bij) is the positive definite symmetric 
matrix GtG. Conversely, if X P X  t =  ~. p i j x i x j  is a 
positive definite quadratic form, then we can write P = 
H t H  for some (n x n) matrix H; hence X P X  t is the 
quadratic form ofthe lattice.~ generated by the columns 

0567-7394/80/020194-04501.00 

of H. S is not unique: any lattice which is an orthog- 
onal transformation of .~  has the same quadratic 
form (since n t o t o  n = HtH).  

Example. The body-centered cubic lattice is 
generated by (2,0,0), (0,2,0), (1,1,1); its quadratic form 
is therefore 

i! 0 !if! 0 (X  1 X 2 X3) 2 2 l/IX2/ 
1 o 

= 4X~ + 4X~ + 3X23 + 4X~ X 3 + 4 X 2 X  3. 

Observe that since the columns of G and GA (A 
integral, det A = + 1) both generate the same lattice L, 
both X B X  t ( = X G  t G X  t) and X A t B A X  t 
( = X A t G  t G A X  t) are quadratic forms of L. Two such 
quadratic forms are called 'integrally equivalent'. 
Finally, if al, ..., a" generate L then, for any non-zero 
c, ca,, . . . ,  ca,, generate a lattice eL whose points are of 
the form c[3 where [3 is a point of L. The lattice packing 
determined by eL has the same density as that 
determined by L; the quadratic form of eL is c2B. 

Summary  

' I f  we do not distinguish between lattices which are 
either orthogonal transforms or scalar multiples of each 
other, and if we do not distinguish between positive- 
definite quadratic forms which are integrally equivalent 
or are scalar multiples of each other, then to every 
lattice there corresponds a quadratic form, and vice 
versa. Generally speaking, it is easier to talk about 
quadratic forms than about lattices. 

A minimum vector of the quadratic form X B X  t is a 
vector m = (m 1 . . . . .  mn) with integer coordinates such 
that m B m  t <_ y B y  t for any non-zero integral vector y. If 
B = G t G determines the lattice L generated by al . . . . .  
a n, then this means that a sphere placed at the point 
m~ a~ + ... + m,, a" is a nearest neighbor of the sphere 
at the origin; the length of this vector, (mBmt) ~/2, is 
twice the radius of the packed spheres. Let us now 
slightly alter the coefficients of B to B + ( e i j )  = B~, 
where eii = eji. Suppose that B and B 1 have the same 
minimum value m B m  t and minimum vectors m = ml, 
..., m r. Then the lattice packing determined by B~ 
admits the same sized spheres, with each sphere 
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touching the same neighbors, as in the lattice packing 
determined by B. Clearly, these conditions hold if and 
only if ma(t;ij ) m~ = 0 for 2 = 1,. . . ,  r. 

If any small change in the coefficients of the 
quadratic form B yields a form B 1 whose lattice 
provides a less dense packing of spheres, then we call 
the lattice L (and its quadratic form B) stable. In three 
dimensions there is only one stable form: it corresponds 
to the face-centered cubic lattice. It is a classical result 
that if B is stable, then there are enough minimum 
vectors m~ . . . .  , m, to ensure that if mA(gij ) m~ = 0 for 2 
= 1 . . . .  , r, then (el j) = 0. Such quadratic forms are 
called perfect. Linear algebra tells us that r >_ n(n + 1)/2. 
In a stable packing, therefbre, each sphere is 
surrounded by at least n(n + 1)/2 pairs of nearest 
neighbors; moreover, a stable packing really is 'stable' 
- one cannot perturb the spheres of such a lattice 
packing in any direction without breaking bonds. 

In 1908 Voronoi established an algebraic charac- 
terization of stable quadratic forms: B is stable if and 
only if B is perfect and B -1 = ~ p i m ~ m  i for some 
positive numbers Pi. The quadratic forms X m ~ m i X  t, 
i = 1, ..., r are called the minimum forms  ofB.  A clear 
account of this theorem (and all of the above) can be 
found in Lekkerkerker (1969). 

A fragile lattice packing of spheres is one which 
locally minimizes the density of the volume of the 
packed spheres: any perturbation of the lattice which 
does not alter the distance (or 'break any bonds') 
between a sphere and its nearest neighbors results in 
a denser configuration (Fields, 1979a). Alternatively, 
these packings locally maximize the volume of the 
'interstitial void' between the spheres. 

Examples of such packings are provided by 
(A) the simple cubic lattice with quadratic form 

X 2 + y2  + Z2; 

(B) the body-centered cubic lattice with quadratic 
form 

4x 2 + 4y2 + 3z 2 + 4xz  + 4yz; 

(C) the hexagonal (or 'trigonal prismatic') lattice 
with quadratic form 

X 2 + y2  + z 2 + xy; 

(D) the body-centered tetragonal lattice with quad- 
ratic form 

2x 2 + 2y 2 + 2z 2 + xy  + 2xz  + 2yz. 

We will show here that these are the only fragile 
lattices in R 3. The two main ingredients of our proof will 
be (1) the algebraic characterization of fragile forms as 
those which are not perfect and whose adjoints are 
linear combinations of minimum forms (Fields, 1979a); 
and (2) the result of Korkine & Zolotareff (1877) 
that any three linearly independent minimum vectors o f  
a positive-definite quadratic form in three variables 
must generate the entire integer lattice. 

The number of degrees of freedom in a lattice packing 

Let L be a lattice with quadratic form B whose 
minimum vectors are m 1, ..., m r. The dimension of the 
subspace of symmetric matrices X which are solutions 

t of the system of linear equations mi(B + X)  m i = 
m i Bm~, i = 1 . . . .  , r, can be interpreted as the number of 
directions in which the coefficients of B can be 
perturbed while still preserving its minimum vectors. In 
R 3, if B determines a lattice containing three inde- 
pendent vectors which are nearest neighbors of the 
origin then this dimension [written df(B)] is either 0, 1, 
2 or 3; it is a relative measure of the instability of the 
corresponding lattice packing, and we may intuitively 
regard it as the number of degrees of freedom of the 
spheres in the packing. If, for example, B is stable (so 
that L is face-centered cubic), then df(B) = 0; more 
generally, if B is any stable form in R" then df(B) = 0 
(cfi above). This dimension can be computed easily for 
any lattice or quadratic form. For fragile forms we 
have the following. 

Proposition. If B is a fragile form in n variables, then 
(1) the set of minimum vectors of B contains n 

linearly independent minimum vectors; 
(2) n(n -- 1)/2 > df(B) _> 1. 
Proof  Some linear combination of the minimum 

forms m~m i is positive definite (Fields, 1979a); this 
implies (1). For (2), let E l be the n x n matrix whose 
(i,i) entry is 1 and is zero elsewhere; and write A * B = 
Y i.j aubu for matrices A = (au), B = (bu). For each 
i = 1, ..., n there is some minimum vector m k such that 

t t * X  m k m k * E  i 4= 0; hence the solution space of m k m k 
= 0 (where X = Xt), k = 1 . . . .  , r, has dimension at 
most n(n + 1 ) / 2 -  n = n ( n -  1)/2. But m ~ , m k , X =  
mk X m~,. 

In particular, a fragile form in three variables can 
have at most three degrees of freedom. Of  the four 
fragile forms listed, the simple cubic has three degrees 
of freedom, the body-centered cubic and hexagonal 
forms have two degrees, and the body-centered 
tetragonal form has one degree of freedom. 

From Proposition (1) and the result of Korkine & 
Zolotareff (1877) mentioned above, it follows that any 
fragile form in three variables is integrally equivalent to 
one for which e I = (1,0,0), - e l ,  e 2 = (0,1,0), --e2, e 3 = 
(0,0,1), - e  3 are minimum vectors. Moreover, any other 
minimum vector of such a fragile form must be one of 
the twenty vectors (+ 1, + 1,0), (+ 1,+ 1,+ 1), (0,+ 1,+ 1), 
(+1,0,+1). The minimum forms associated with +e~, 
+e2, +e 3 are E 1, E 2, E 3 (E i = e~ei). The minimum 
forms associated with the remaining ten pairs of vectors 
a r e  

Ml = 1 , M 2 =  1 , 

0 0 
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M3= 1 , 

1 

etc. 

In what  follows, 

B =  a 1 

d a 

is assumed fragile, with e l, ez, e3 among its minimum 
vectors (so that  a = a l  = az). 

L e m m a  1. If  df(B)  = 3 then B is a multiple of  
x 2 + y2 + z 2. 

Proo f  B has only +e  l, +ez, +e  3 as minimum 
vectors;  hence B -~ must  be of  the form 

pEx + qE 2 + rE 3 = q , 

0 

and so B = (B-~) -I must  also be of  this form. The 
parenthet ic  remark  above now implies our conclusion. 

L e m m a  2. If  d f (B)  = 2 then B is equivalent to a 
multiple of  

4x  2 + 4y 2 + 3z 2 + 4xz  + 4yz  

o r  

X 2 nu y2 + Z2 ..}_ xy .  

Proo f  B must  have another  pair of  min imum vectors 
+ m  in addit ion to + e  l, _+e z, + e  3 such that  
{E1,Ez,E3,m t m} is a basis of  the space spanned by the 
min imum forms of  B. Moreover ,  by using the trans- 
format ions  

( e i i 4= j rj(e,) = /  "' j = 1 ' 2 ' 3 '  
- - e  i i = J 

we can t ransform B so that  the non-zero entries of  m 
are all + 1. Hence there are in effect only two cases to 
consider:  
Case I: m = (1,1,0); then B -~ is a linear combinat ion  of  
E x, E z, E3, and M x so that  

B - I =  f l  • 

0 

H e n c e ,  B is also decomposable  and so must  be 
equivalent to the hexagonal  form. 
Case II:  m = (1,1,1); then a)(1) 

(1,1,1) a d 1 = a ,  

d 1 

so a + b + c + d = 0. Moreover ,  B -1 is a linear 
combinat ion  of  E l, E 2, E 3 and M 3 so that  

B - l =  f • 

6 

Therefore,  ~tf -- 6 z = s W -- 6 z = fly -- d z and so 
, = f =  y. 

If  we now compute  the (i , j)  cofactors o f B  -~, we see 
that  b = e = d, and therefore b = e = d = - a / 3 .  But 
n o w  (3l 1 1 3 - 1  

1 - - 1  3 

is equivalent to the body-centered cubic form. 
Lemma 2 is proved. 
L e m m a  3. If  d f (B)  = 1 then B is equivalent to a 

multiple of  

2x 2 + 2y2 + 2z2 + xy  + 2xz  + 2yz. 

P r o o f  B must have two other pairs of  minimum 
vectors + m  I and + m  2 in addition to + e  l, +e  2, +e  3 
such that  {E l, E2, E3, m] m l, m S m z } is a basis of  the 
space spanned by the minimum forms of B. 
Case I" m I = (1,1,0), m 2 = (1,0,1). As above, we 
have 

2a + 2b = a, 

2a + 2e = a, (1) 

so that  b = - a / 2  and ¢ = - a / 2 .  Moreover ,  

B - ~ =  f • 

0 

Therefore,  ad - be = 0 and d = a/4 by (1). But now 

(__!--241 - - i )  

is equivalent to the body-centered tetragonal  quadrat ic  
form. 
Case II: in I = (1,1,1), m2 = (1 ,1 , -1 ) ;  then, 

a + b + c + d = O ,  

a + b - e - d = O ,  

so that  a = - b  and c = - d .  But now 

( - - i - - a  a d - ! )  

is not  positive definite, so this case cannot  arise. 



K. L. FIELDS 197 

Case III: m I 

and 

so that 

= (1,1,1), m 2 -- (1,1,0); then 

a + b + c + d = O ,  

b = - a / 2  

(1) 

(2) 

B-I = fl , 

bd - ac = - a d  + be. (3) 

Equations (1) and (3) imply that c = d = - a / 4 .  But 
again 

is equivalent to the body-centered tetragonal quadratic 
form. 
Case IV; m~ = (I ,-1,1),  m2 = (1,1,0). As above, 

a - b + c - d = O ,  

b = - a / 2 ,  

c = - d  = - 3 a / 4 .  

But 

( - i - 2 4 3  - i )  

has minimum value 2 so that m I and m 2 are not 
m in imum vectors; i.e. this case cannot arise. 

In all remaining cases, either there is no fragile form 
having m~ and m E as minimum vectors or else the form 
is body-centered tetragonal; the details are exactly 
similar to the above cases. 

Lemma 3 and our classification is complete. 

Post  script 
Our attention has been directed to Patterson (1941) 

and Patterson & Kasper (1959). In the latter the 
packing properties of the one stable and four fragile 
lattices are summarized. In the former, Patterson 
essentially considers the quadratic forms 

gl 1 g3 

g2 g3 1 

and, using geometric arguments, derives conditions on 
gl, g2, g3 for there to be 3, 4, 5 or 6 pairs of minimum 
vectors. The associated lattices are called 'lattice close 
packings'. Patterson then derives conditions on g~, g2, 

g3 to distinguish between the various possible space 
groups. He finds there are 15 'essentially different' 
lattice close packings (Patterson, 1941, Table III and 
Fig. 5). Patterson then concludes that the four fragile 
lattices (cf. above) provide locally minimally dense 
packings. 

Our results may be viewed as providing p r o o f  of 
Patterson's geometric findings; they also establish that 
there are no other locally minimally-dense lattice 
packings. In particular, the remaining ten 'essentially 
different' close packings are neither stable nor fragile: in 
each case it is possible either to increase or to decrease 
the packing density without breaking any bonds by 
perturbing the set of generating vectors in two different 
ways. 

Some physics 

If one accepts the model of a weakly bonded 
monatomic metallic solid as being a lattice of positive 
ions in an electron sea, then one would expect such a 
lattice to be minimally dense (i.e. fragile) .  The simple 
cubic lattice would be ruled out since it is geo- 
metrically unstable, having three degrees of freedom: 
the three pairs of nearest neighbors of any ion can be 
perturbed independently. Of the three remaining fragile 
lattices, the body-centered cubic is singled out by the 
fact that its Epstein zeta function Z I rl-2S is locally 
min imal  (Fields, 1979b). In other words, repulsive 
energy is minimized with respect to perturbations 
which preserve the bonding in a body-centered cubic 
metallic lattice; we would therefore expect this structure 
to prevail among weakly bonded metals. 

Our considerations cannot easily be applied to ionic 
solids because here the potential energy is determined 
by a series which is not absolutely convergent (the 
Madelung constant). We point out, however, that if 
the (two) ions have approximately equal size and 
polarizability, then the polarization energy of the 
crystal lattice is proportional to ~ Irl-4; hence 
polarization energy is locally minimized in simple cubic 
and body-centered cubic lattices (Fields, 1979b). 
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